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Model
Labels

Each example in the training data is a pair consisting of an input vector (features) and a 

desired output value (labels).

A supervised learning algorithm analyzes the training data and approximate a function, which 

can be used for mapping new unlabeled examples.

Features

SUPERVISED LEARNING

Dog

DEEP LEARNING FOR TRADING



FINNANCIAL PREDICTION PITFALLS

Much Data

Possible relevant data 

from many markets is 

incredibly large.

No Theory

Complex non-linear 

interactions in the data 

are not well specified 

by financial theory.

Noisy Data

Noise In financial data

Is very common and 

sometimes 

distinguishing noise 

from behavior is hard.

Importance 

Data Importance is 

questionable and 

determination of 

meaningful data is hard.

Overfitting

Overfitted easily, most 

models have poor 

predictive capabilities 

On financial data.

Behavior 

Behavior of financial 

markets change all the 

time and can be really 

unpredictable.
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WHY DEEP LEARNING?

Much Data

Possible relevant data 

from many markets is 

incredibly large.

No Theory

Complex non-linear 

interactions in the data 

are not well specified 

by financial theory.

Noisy Data

Noise In financial data

Is very common and 

sometimes 

distinguishing noise 

from behavior is hard.

Importance 

Data Importance is 

questionable and 

determination of 

meaningful data is hard.

Overfitting

Overfitted easily, most 

models have poor 

predictive capabilities 

On financial data.

Behavior 

Behavior of financial 

markets change all the 

time and can be really 

unpredictable.
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LINEAR REGRESSION
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𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯+ 𝛽𝑛𝑥𝑖𝑛 + 𝜀

∑ 𝑦𝑖

𝑥𝑖1
𝑥𝑖2
𝑥𝑖3

𝑥𝑖𝑛

…
…

DEEP LEARNING FOR TRADING

Regression



Perceptron
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Neural Network

Perceptron Layer
(Hidden Layer)

Input Layer Output Layer
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GRADIENT BASED MODELS
Legend

𝑥0

𝑓0(𝑥0, 𝑤0)

𝑓1(𝑥1, 𝑤1)

𝑓2(𝑥2, 𝑤2)

𝑓𝑛 𝑥𝑛, 𝑤𝑛 =  𝑦

𝑓𝑛−1(𝑥𝑛−1, 𝑤𝑛−1)

𝑓𝑛−2(𝑥𝑛−2, 𝑤𝑛−2)

𝑤0

𝑤1

𝑤𝑛

𝑤𝑛−1

𝐸 = 𝑙  𝑦, 𝑦𝑦

𝑙  𝑦, 𝑦 - Loss Function

𝑥0 - Features Vector

𝑥𝑖 - Output of 𝑖 layer

𝑤𝑖 - Weights of 𝑖 layer

𝑦 – Ground Truth

 𝑦 – Model Output

𝐸 – Loss Surface

𝜕𝐸

𝜕𝑥𝑛
=

𝜕𝑙  𝑦, 𝑦

𝜕𝑥𝑛

𝜕𝐸

𝜕𝑤𝑛
=

𝜕𝐸

𝜕𝑥𝑛

𝜕𝑓𝑛 𝑥𝑛−1, 𝑤𝑛

𝜕𝑤𝑛

𝜕𝐸

𝜕𝑥𝑛−1
=

𝜕𝐸

𝜕𝑥𝑛

𝜕𝑓𝑛 𝑥𝑛−1, 𝑤𝑛

𝑥𝑛−1

𝑓– Activation Function

𝜕𝐸

𝜕𝑥𝑛−2
=

𝜕𝐸

𝜕𝑥𝑛−1

𝜕𝑓𝑛−1 𝑥𝑛−2, 𝑤𝑛−1

𝑥𝑛−2

𝜕𝐸

𝜕𝑤𝑛−1
=

𝜕𝐸

𝜕𝑥𝑛−1

𝜕𝑓𝑛 𝑥𝑛−2, 𝑤𝑛−1

𝜕𝑤𝑛−1

…
…

𝐹
𝑜
𝑟𝑤

𝑎
𝑟𝑑

𝑃
𝑟𝑜

𝑝
𝑎
𝑔
𝑎
𝑡𝑖
𝑜
𝑛

𝐵
𝑎
𝑐𝑘

𝑃
𝑟𝑜

𝑝
𝑎
𝑔
𝑎
𝑡𝑖𝑜

𝑛

𝑣𝑡 = 𝜇𝑣𝑡−1 − 𝛼𝛻𝐿𝑡(𝑤𝑡−1)

𝑤𝑡 = 𝑤𝑡−1 − 𝑉𝑡

Classic SGD

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝛻𝐿𝑡(𝑤𝑡−1)

 
𝑡′=1
𝑡 𝛻𝐿𝑡′(𝑤𝑡′−1)

2

AdaGrad RMSProp
𝑅𝑡 = 𝛾𝑅𝑡−1 + (1 − 𝛾) 𝛻𝐿𝑡(𝑤𝑡−1)

2

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝛻𝐿𝑡(𝑤𝑡−1)

𝑅𝑡

𝑀𝑡 =
𝛽1𝑀𝑡−1 + (1 − 𝛽1) 𝛻𝐿𝑡(𝑤𝑡−1)

(1 − 𝛽1)
𝑡

𝑅𝑡 =
𝛽2𝑀𝑡−1 + (1 −

𝛽2
2
)

𝛻𝐿𝑡(𝑤𝑡−1)
2

(1 − 𝛽2)
2

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝑀𝑡

𝑅𝑡

Adam

1: Forward Propagation 2: Loss Calculation 3: Optimization
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DEEP LEARNING COMMON STRUCTURES

SUPERVISED UNSUPERVISED

Perceptron It is a type of linear classifier, a classification algorithm that makes its predictions based on a linear 

predictor function combining a set of weights with the feature vector. The algorithm allows for online learning, in that 

it processes elements in the training set one at a time.

RECURRENTFEED FORWARD

Feed Forward Network sometimes

Referred to as MLP, is a fully 

connected dense model used as a 

simple classifier. 

Convolutional Network assume that 

highly correlated features located 

close to each other in the input 

matrix and can be pooled and 

treated as one in the next layer.

Known for superior Image 

classification capabilities.

Simple Recurrent Neural Network 

is a class of artificial neural 

network where connections 

between units form a directed 

cycle. 

Hopfield Recurrent Neural Network 

It is a RNN in which all connections 

are symmetric.  it requires 

stationary inputs. 

Long Short Term Memory Network

contains gates that determine if 

the input is significant enough to 

remember, when it should continue 

to remember or forget the value, 

and when it should output

Auto Encoder aims to learn a 

representation (encoding) for a set 

of data, typically for the purpose of 

dimensionality reduction. 

Restricted Boltzmann Machine

can learn a probability distribution 

over its set of inputs.. 

Deep Belief Net is a composition of 

simple, unsupervised networks such 

as restricted Boltzmann machines 

,where each sub-network's hidden 

layer serves as the visible layer for 

the next.

DEEP LEARNING FOR TRADING



DEEP LEARNING SUPERIORITY 

96.92%
Deep Learning

94.9%
Human
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Deep Neural Networks

Input Layer Output Layer

DEEP LEARNING FOR TRADING

Hidden Layersי

Ground Truth

Future Prices

Up or Down
Classification

Regression

Features

Past Prices

Correlations

Technical 
Analysis

Z Score

Time Features Implementing deep neural networks for financial market prediction, Dixon et al, 
2015

Recommended Papers



Model
Features

Each example in the training data is a pair consisting of an input vector and again the input 

vector.

The goal is to learn function that describes the hidden structure from unlabeled data.

Features

UNSUPERVISED LEARNING

DEEP LEARNING FOR TRADING



Auto Encoders

Input Layer Output Layer

DEEP LEARNING FOR TRADING

Hidden Layersי

Features

Past Prices

Correlations

Technical 
Analysis

Z Score

Time Features

Features

Past Prices

Correlations

Technical 
Analysis

Z Score

Time Features
Deep Modeling Complex Couplings within Financial Markets, Cao et al, AAAI 2015 

Recommended Papers



Unsupervised Pretraining

Input Layer Output Layer

DEEP LEARNING FOR TRADING

Hidden Layersי

Features

Past Prices

Correlations

Technical 
Analysis

Z Score

Time Features

Features

Past Prices

Correlations

Technical 
Analysis

Z Score

Time Features

Ground Truth

Future Prices

Up or Down
Classification

Regression

Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks, L 
Takeuchi, 2013 

Deep Learning for Multivariate Financial Time Series, Estrada, 2015 

Recommended Papers



DEEP LEARNING WITH PYTHON



Deep Learning Hardware

Better for Matrix algebra 

Parallel calculations

Much more powerful

DEEP LEARNING FOR TRADING



Deep Learning Framework

DEEP LEARNING FOR TRADING

HardwareDriver + LibFrameworkFrameworkLanguage 



Deep Learning Using Python

DEEP LEARNING FOR TRADING

HardwareDriver + LibFrameworkFrameworkLanguage Abstraction



Python Stays Python

DEEP LEARNING FOR TRADING

import theano.sandbox.cuda

theano.sandbox.cuda.use("gpu")



Theano

DEEP LEARNING FOR TRADING



Theano Tutorial
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Theano Tutorial

DEEP LEARNING FOR TRADING

import numpy, theano
np_array = numpy.ones(2, dtype='float32')

s_false = theano.shared(np_array, borrow=False)
s_true = theano.shared(np_array, borrow=True)

np_array += 1
print(s_false.get_value())
print(s_true.get_value())

[ 1.  1.]
[ 2.  2.]

In [1]:

Out [1]:

Variables
A Theano Variable is a Variable with storage that is 
shared between functions that it appears in.



Theano Tutorial

DEEP LEARNING FOR TRADING

import theano
x = theano.tensor.dscalar()
f = theano.function([x], 2*x)
f(4)

array(8.0)

In [1]:

Out [1]: Functions
The idea here is that we’ve compiled the symbolic graph 
(2*x) into a function that can be called on a number and 
will do some computations.



Theano Tutorial

DEEP LEARNING FOR TRADING

import numpy
import theano
import theano.tensor as T
from theano import pp
x = T.dscalar('x')
y = x ** 2
gy = T.grad(y, x)
pp(gy)  # print out the gradient prior to optimization

'((fill((x ** TensorConstant{2}), TensorConstant{1.0}) * 
TensorConstant{2}) * (x ** (TensorConstant{2} - TensorConstant{1})))'

f = theano.function([x], gy)
f(4)

array(8.0)

In [1]:

Out [1]:

Gradients
Now let’s use Theano for a slightly more sophisticated 
task: create a function which computes the derivative of 
some expression y with respect to its parameter x.

In [2]:

Out [2]:



LINEAR REGRESSION

DEEP LEARNING FOR TRADING

 𝑦 = 𝑤𝑥 𝑙 =
1

𝑛
 

𝑖=1

𝑛

(  𝑦𝑖 − 𝑦𝑖)
2 𝑤 = 𝑤 − 𝛼

𝜕𝑙

𝜕𝑤



Theano Tutorial

DEEP LEARNING FOR TRADING

def model(X, weights):
return X * weights

w = theano.shared(np.asarray(0., dtype=theano.config.floatX))
y = model(X, weights)

Loss = T.mean(T.sqr(y - Y))
gradient = T.grad(loss, weights)
updates = [[weights, weights - gradient * learning_rate]]

train = theano.function(inputs=[X, Y], outputs=loss, updates=updates, 
allow_input_downcast=True)

for i in range(epoches):
for x, y in zip(X, Y):

train(x, y)

In [1]:

 𝑦 = 𝑤𝑥 𝑙 =
1

𝑛
 

𝑖=1

𝑛

(  𝑦𝑖 − 𝑦𝑖)
2 𝑤 = 𝑤 − 𝛼

𝜕𝑙

𝜕𝑤

Function Loss Update Rule



GRADIENT BASED MODELS
Legend

𝑥0

𝑓0(𝑥0, 𝑤0)

𝑓1(𝑥1, 𝑤1)

𝑓2(𝑥2, 𝑤2)

𝑓𝑛 𝑥𝑛, 𝑤𝑛 =  𝑦

𝑓𝑛−1(𝑥𝑛−1, 𝑤𝑛−1)

𝑓𝑛−2(𝑥𝑛−2, 𝑤𝑛−2)

𝑤0

𝑤1

𝑤𝑛

𝑤𝑛−1

𝐸 = 𝑙  𝑦, 𝑦𝑦

𝑙  𝑦, 𝑦 - Loss Function

𝑥0 - Features Vector

𝑥𝑖 - Output of 𝑖 layer

𝑤𝑖 - Weights of 𝑖 layer

𝑦 – Ground Truth

 𝑦 – Model Output

𝐸 – Loss Surface

𝜕𝐸

𝜕𝑥𝑛
=

𝜕𝑙  𝑦, 𝑦

𝜕𝑥𝑛

𝜕𝐸

𝜕𝑤𝑛
=

𝜕𝐸

𝜕𝑥𝑛

𝜕𝑓𝑛 𝑥𝑛−1, 𝑤𝑛

𝜕𝑤𝑛

𝜕𝐸

𝜕𝑥𝑛−1
=

𝜕𝐸

𝜕𝑥𝑛

𝜕𝑓𝑛 𝑥𝑛−1, 𝑤𝑛

𝑥𝑛−1

𝑓– Activation Function

𝜕𝐸

𝜕𝑥𝑛−2
=

𝜕𝐸

𝜕𝑥𝑛−1

𝜕𝑓𝑛−1 𝑥𝑛−2, 𝑤𝑛−1

𝑥𝑛−2

𝜕𝐸

𝜕𝑤𝑛−1
=

𝜕𝐸

𝜕𝑥𝑛−1

𝜕𝑓𝑛 𝑥𝑛−2, 𝑤𝑛−1

𝜕𝑤𝑛−1

…
…

𝐹
𝑜
𝑟𝑤

𝑎
𝑟𝑑

𝑃
𝑟𝑜

𝑝
𝑎
𝑔
𝑎
𝑡𝑖
𝑜
𝑛

𝐵
𝑎
𝑐𝑘

𝑃
𝑟𝑜

𝑝
𝑎
𝑔
𝑎
𝑡𝑖𝑜

𝑛

𝑣𝑡 = 𝜇𝑣𝑡−1 − 𝛼𝛻𝐿𝑡(𝑤𝑡−1)

𝑤𝑡 = 𝑤𝑡−1 − 𝑉𝑡

Classic SGD

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝛻𝐿𝑡(𝑤𝑡−1)

 
𝑡′=1
𝑡 𝛻𝐿𝑡′(𝑤𝑡′−1)

2

AdaGrad RMSProp
𝑅𝑡 = 𝛾𝑅𝑡−1 + (1 − 𝛾) 𝛻𝐿𝑡(𝑤𝑡−1)

2

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝛻𝐿𝑡(𝑤𝑡−1)

𝑅𝑡

𝑀𝑡 =
𝛽1𝑀𝑡−1 + (1 − 𝛽1) 𝛻𝐿𝑡(𝑤𝑡−1)

(1 − 𝛽1)
𝑡

𝑅𝑡 =
𝛽2𝑀𝑡−1 + (1 −

𝛽2
2
)

𝛻𝐿𝑡(𝑤𝑡−1)
2

(1 − 𝛽2)
2

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝑀𝑡

𝑅𝑡

Adam

1: Forward Propagation 2: Loss Calculation 3: Optimization
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updates = [[weights, weights - gradient * learning_rate]]

GRADIENT BASED MODELS
Legend

𝑙  𝑦, 𝑦

𝑙  𝑦, 𝑦 - Loss Function

𝑥0 - Features Vector

𝑥𝑖 - Output of 𝑖 layer

𝑤𝑖 - Weights of 𝑖 layer

𝑦 – Ground Truth

 𝑦 – Model Output

𝐸 – Loss Surface

𝑓– Activation Function

1: Forward Propagation 2: Loss Calculation 3: Optimization

DEEP LEARNING FOR TRADING

𝜕𝐸

𝜕𝑥
=

𝜕𝑙  𝑦, 𝑦

𝜕𝑥

𝑓0(𝑥0, 𝑤0)

𝑓1(𝑥1, 𝑤1)

𝑓2(𝑥2, 𝑤2)

𝑤0

𝑤1

…𝑓 𝑓 𝑓 𝑥 …

def model(X, weights)
…
… updates =

[[weights, weights - gradient]]

gradient =
T.grad(loss, weights)

Loss = …



Keras Tutorial

DEEP LEARNING FOR TRADING

from keras.models import Sequential
from keras.layers.core import Dense, Activation

model = Sequential()

In [1]:

Sequential
The core data structure of Keras is a model, a way to 
organize layers. The main type of model is the Sequential 
model, a linear stack of layers. 

model.add(Dense(output_dim=…, input_dim=…)) model.add(Activation(…))



Keras Tutorial

DEEP LEARNING FOR TRADING

from keras.models import Sequential
from keras.layers.core import Dense, Activation

model = Sequential()
model.add(Dense(output_dim=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(output_dim=24, input_dim=64))
model.add(Activation("relu"))
model.add(Dense(output_dim=10))
model.add(Activation("softmax"))

model.compile(loss='categorical_crossentropy', optimizer='sgd')
model.fit(X,Y)

In [1]:

Sequential
The core data structure of Keras is a model, a way to 
organize layers. The main type of model is the Sequential 
model, a linear stack of layers. 



Deep Neural Networks

Input Layer Output Layer
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Hidden Layersי

Ground Truth

Future Prices

Up or Down
Classification

Regression

Features

Past Prices

Correlations

Technical 
Analysis

Z Score

Time Features Implementing deep neural networks for financial market prediction, Dixon et al, 
2015

Recommended Papers



Deep Neural Networks

Input Layer Output Layer

DEEP LEARNING FOR TRADING

Hidden Layersי
Ground Truth

Future Prices

Up or Down
Classification

Regression

Features

Past Prices

Correlations

Technical 
Analysis

Z Score

Time Features

model = Sequential()
model.add(Dense(output_dim=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(output_dim=24, input_dim=64))
…
model.compile(loss='categorical_crossentropy',

optimizer='sgd')
model.fit(X,Y)



Auto Encoders

Input Layer Output Layer
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Hidden Layersי

Features

Past Prices

Correlations

Technical 
Analysis

Z Score

Time Features

Features

Past Prices

Correlations

Technical 
Analysis

Z Score

Time Features
Deep Modeling Complex Couplings within Financial Markets, Cao et al, AAAI 2015 

Recommended Papers



Auto Encoders

Input Layer Output Layer

DEEP LEARNING FOR TRADING

Hidden LayersFeaturesי

Past Prices

Correlations

Technical 
Analysis

Z Score

Time Features

Features

Past Prices

Correlations

Technical 
Analysis

Z Score

Time Features

model = Sequential()
model.add(Dense(output_dim=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(output_dim=24, input_dim=64))
…
model.compile(loss='categorical_crossentropy',

optimizer='sgd')
model.fit(X,X)



Questions?


