THE PYTHON

Yam Peleg

DEEP LEARNING FOR TRADING

OUR GOAL

2 We want to predict the future.

Yam Peleg

DEEP LEARNING FOR TRADING

OUR GOAL

We want to predict the future.

o
A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O L LT T T e L LT T TP PP, > o
2\
Yam Peleg

DEEP LEARNING FOR TRADING

SUPERVISED LEARNING

Labels
L ED Model

Each example in the training data is a pair consisting of an input vector (features) and a
desired output value (labels).

A supervised learning algorithm analyzes the training data and approximate a function, which
can be used for mapping new unlabeled examples.

Yam Peleg

DEEP LEARNING FOR TRADING

PREDICTION

The longer the time frame, the more difficult it will be to accurately forecast financial results.

v Graph for Mind Essence

Avg. Markup: 207.04% =

Importance ‘ il Overfitting Behavior
— e e — e
b Pm‘ il + V(, &y /'f
Data Importance is 12 \/v“ Jr) J “w : Overfitted easily, most i/ Behavior of financial
questionable and . .\—V?W Bk % models have poor T , i markets change all the
Wl AN WL AL At R AT
determination of & o P : ‘L‘ predictive capabilities ‘ ‘ time and can be really
0 . v 4 . . : .
meaningful data is hard. (‘u\‘)% ﬁg On financial data. unpredictable.

2007-03-15 0(7 03-17 2007-03-18
08:36:47 36:47 20:36:47

Overfit

Much Data No Theory

Noisy Data

Possible relevant data Complex non-linear Noise In financial data

from many markets is interactions in the data Is very common and

sometimes DOW 9,869.62
distinguishing noise ¥ 998.50/9.2%

from behavior is hard. oy oy 260

incredibly large. are not well specified

by financial theory.

Yam Peleg
LEARNING TRADING

DEEP LEARNING?

This is why.

v Graph for Mind Essence

Avg. Markup: 207.04% =

Importance ‘ il Overfitting Behavior
— e e — e
b Pm‘ il + V(, &y /'f
Data Importance is 12 \/v“ Jr) J “w : Overfitted easily, most i/ Behavior of financial
questionable and . .\—V?W Bk % models have poor T , i markets change all the
Wl AN WL AL At R AT
determination of & o P : ‘L‘ predictive capabilities ‘ ‘ time and can be really
0 . v 4 . . : .
meaningful data is hard. (‘u\‘)% ﬁg On financial data. unpredictable.

2007-03-15 0(7 03-17 2007-03-18
08:36:47 36:47 20:36:47

Overfit

Much Data No Theory

Noisy Data

Possible relevant data Complex non-linear Noise In financial data

from many markets is interactions in the data Is very common and

sometimes DOW 9,869.62
distinguishing noise ¥ 998.50/9.2%

from behavior is hard. oy oy 260

incredibly large. are not well specified

by financial theory.

Yam Peleg
LEARNING TRADING

LINEAR REGRESSION

eeeeeeee

EEEEEEEEEEEEEEEEEEEEEE

Regression

i)’i

eeeeeeee

DEEP LEARNING FOR TRADING

Perceptron

The Artificial Neuron

Input

[2]=18]¢

o—omput

Input

Yam Peleg

DEEP LEARNING FOR TRADING

Neural Network

One Layer Perceptron

Perceptron Layer
(Hidden Layer)

Output Layer

Input Layer

Yam Peleg

DEEP LEARNING FOR TRADING

GRADIENT BASED MODELS

1: Forward Propagation 2: Loss Calculation

y * ~E=17,y)

s

3: Optimization

I A
. 0E _ 0l(y,y)
I faGn,wy) =39 I =)
|W I 0xy 0xp !
n
:: fn—l(xn—lan—l)I g o0E _ oE afn(xn—lr%’n)
S IWn—1): % 0x,_1 Oxp Xp_q |
)
= frn—2(Xn—2,Wn_2)_ = ‘
?: R Ig OE _ 0E 0fn(xp_1,Wn)
S I ow, — ox, owy,
£l 1S
<l I oE 0E 0fy_1(xp_2 Wp_1)
~ _ n—1*n-2»"n-1
fa(xz2,w2) o =
S
‘“: Q00 000 reww I _E _ 0 3f(tazWns)
W woow W : W,_1 0xpy_q F
1 000 000w H
I X
Classic SG? AdaGra;iL)) RMSProp 2 Adam =
Ve = uvp_q — aVL(We_q) We = Wy — @ = Bt 2 Re = th__l + (:;L)t(‘if_tl()wt—l) LS 8 :ﬁgtwt(wt_l) g
o= et — V, \/Zt:ﬂVLt'(wtf-l) e e JR: BoMyy + (1 -) ThelWe=n) -0
- (1= f2)? =
M,
Yam Peleg W= Wi T A

DEEP LEARNING FOR TRADING

DEEP LEARNING COMMON STRUCTURES

e Perceptron It is a type of linear classifier, a classification algorithm that makes its predictions based on a linear

lERt ouput predictor function combining a set of weights with the feature vector. The algorithm allows for online learning, in that
Input it processes elements in the training set one at a time.
SUPERVISED UNSUPERVISED

FEED FORWARD RECURRENT

Feed Forward Network sometimes
Referred to as MLP, is a fully

connected dense model used as a

Auto Encoder aims to learn a . .

representation (encoding) for a set . .
of data, typically for the purpose of ‘/ \.

aimensionality reduction.

\.

Simple Recurrent Neural Network (v
is a class of artificial neural
network where connections

between units form a directed /

25

hh

4

cimple classifier.

cycle.

Hopfield Recurrent Neural Network

Convolutional Network assume that — — Restricted Boltzmann Machine
. P It is a RNN in which all connections
highly correlated features located o , can learn a probability distribution
. . are symmetric. It requires _ _ . .
close to each other in the input tationary inoute , : over its set of inputs..
matrix and can be pooled and y Inputs.
treated as one in the next layer.
Y Long Short Term Memory Network ®
—t : - " o
contains gates that determine if o] 1 Deep Belief Net is a composition of o
i % : :
NICUT RN e ¥ the input is significant enough to ‘ % Sl TR EATSEE RS Sl ./%..
classification capabilities. PR Ry i i
p remember, when it should continue) AT output as restricted Boltzmann machines / o
A~ where each sub—network’s hidden .Q
to remember or forget the value, K ’ (]}
il ot e elhen] e layer serves as the visible layer for

the next.

Yam Peleg

DEEP LEARNING FOR TRADING

DEEP LEARNING SUPERIORITY

Deep Learning is better then humans on certain Image recognition tasks.

Deep Learning

tv ex.monitor

ref: http://www.image-net.org/challenges/LSVRC/

Yam Peleg

DEEP LEARNING FOR TRADING

Deep Neural Networks

For complex function approximation

Recommended Papers

Implementing deep neural networks for financial market prediction, Dixon et al,

Yam Peleg
DEEP LEARNING FOR TRADING

UNSUPERVISED LEARNING

Features
Features Model

Each example in the training data is a pair consisting of an input vector and again the input
vector.

The goal is to learn function that describes the hidden structure from unlabeled data.

Yam Peleg

DEEP LEARNING FOR TRADING

- Auto Encoders -

B DI For learning the distribution of the features I

HiddenLayers OutputLayer PaStPrices

- - isciiitd
: /‘\ @ : TAn:wsisl

e R e Recommended Papers B s

--------- o Deep Modeling Complex Couplings within Financial Markets, Cao et al, AAAI 2015 e g

LIPS PE PPN PP Yam Peleg e I

B DEEP LEARNING FOR TRADING e T R B

S Unsupervised Pretraining o

For better approximation

'Hidden Layers
0. O:
@

piia -@-
B 19 / N\
g ‘ .

S Recommended Papers

TlmeFeatures Applymg.Deep Learning to Enhance Momentum Trading Strategies in Stocks, L TlmeFeatures
T Takeuchi, 2013 Ll
. DeepLearning for Multivariate Financial Time Series, Estrada, 2015 I

.. Yam Peleg 906 5 5005000000660 0000000066 0000000 0

B DEEP LEARNING FOR TRADING e T R B

e

Yam Peleg

DEEP LEARNING WITH PYTHON

Deep Learning Hardware

Deep learning is often done on the GPU or other powerful devices

Yam Peleg

DEEP LEARNING FOR TRADING

Deep Learning Framework

Deep learning is often done on the GPU or other powerful devices

4

¢
<

(i
t 2
et

e«» PG

* ?TensorFIow i
® °

Lua <
-’ s toreh
Language Framework Framework Driver + Lib Hardware

Yam Peleg

DEEP LEARNING FOR TRADING

Deep Learning Using Python

Deep learning is often done on the GPU or other powerful devices

K

CUDA

Language Prhateredidn Framework Driver + Lib Hardware

Yam Peleg

DEEP LEARNING FOR TRADING

Python Stays Python

Deep learning is often done on the GPU or other powerful devices

theano.sandbox. cuda

theano.sandbox.cuda.use("gpu")

Yam Peleg

DEEP LEARNING FOR TRADING

Theano

Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently.

<= .

Yam Peleg

Lion presentation to: Page: DEEP LEARNING FOR TRADING

Theano Tutorial

Language i dng

Y0 DAWG; | E.RED YOU LIKE MN@&DA@

“ A .
I_'
- V‘
‘ "‘\ \ ” o

e —

=

@ o >
Vi

SOII'PUT A LANGUAG%E INSIDE UR LANGUAGE

Yam Peleg

DEEP LEARNING FOR TRADING

Tutorial

Shared Variables

In [1]: import numpy, theano
np_array = numpy.ones(2, dtype='float32')

s _false theano.shared(np_array, borrow=False)
s_true = theano.shared(np_array, borrow=True)

np_array += 1
print(s_false.get value())

print(s_true.get value())
A Theano Variable is a Variable with storage that is

shared between functions that it appears in.
out [11:[1. 1.]
[2. 2.]

Yam Peleg

LEARNING TRADING

Theano Tutorial

When using theano.function you're compiling C code performing your tasks under the hood. This is what makes Theano fast.

In [1]: import theano
x = theano.tensor.dscalar()
£ = theano.function([x], 2*x)
t(4)

Out [1]:array(8.0
y() The idea here is that we've compiled the symbolic graph

(2*x) into a function that can be called on a number and
will do some computations.

Yam Peleg

DEEP LEARNING FOR TRADING

Tutorial

Gradients: computes the derivative of some expression

In [1]: import numpy

import theano
import theano.tensor as T Now let's use Theano for a slightly more sophisticated
task: create a function which computes the derivative of

from theano import) :)
p pp some expressiony with respect to its parameter) &

X = T.dscalar('x")

y = x ** 2

gy = T.grad(y, x)

pp(gy) # print out the gradient prior to optimization

out [1]1: "((fill((x ** TensorConstant{2}), TensorConstant{1.0}) *
TensorConstant{2}) * (x ** (TensorConstant{2} - TensorConstant{1})))'

In [2]: f = theano.function([x], gy)
f(4)

Out [2]: array(8.0)

Yam Peleg

LEARNING TRADING

=

LINEAR REGRESSION

1n
— WX =» l=£z(yi_3’i)2 -»> W=W—«
=1

eeeeeeee

DEEP LEARNING FOR TRADING

dl

ow

TUtoriaI y WX | = 1Z(yi_yi)2 W:W_aﬂ

=
|

Gradient based linear regression =1

In

[1]:

def model(X, weights):
return X * weights

w = theano.shared(np.asarray(0., dtype=theano.config.floatX))
y = model(X, weights)

Loss = T.mean(T.sqgr(y - Y))
gradient = T.grad(loss, weights)
updates = [[weights, weights - gradient * learning rate]]

train = theano.function(inputs=[X, Y], outputs=loss, updates=updates,
allow input_downcast=True)

for i in range(epoches):
for x, y in zip(X, Y):
train(x, y)

Yam Peleg

LEARNING TRADING

GRADIENT BASED MODELS

1: Forward Propagation 2: Loss Calculation

y * ~E=17,y)

s

3: Optimization

I A
. 0E _ 0l(y,y)
I faGn,wy) =39 I =)
|W I 0xy 0xp !
n
:: fn—l(xn—lan—l)I g o0E _ oE afn(xn—lr%’n)
S IWn—1): % 0x,_1 Oxp Xp_q |
)
= frn—2(Xn—2,Wn_2)_ = ‘
?: R Ig OE _ 0E 0fn(xp_1,Wn)
S I ow, — ox, owy,
£l 1S
<l I oE 0E 0fy_1(xp_2 Wp_1)
~ _ n—1*n-2»"n-1
fa(xz2,w2) o =
S
‘“: Q00 000 reww I _E _ 0 3f(tazWns)
W woow W : W,_1 0xpy_q F
1 000 000w H
I X
Classic SG? AdaGra;iL)) RMSProp 2 Adam =
Ve = uvp_q — aVL(We_q) We = Wy — @ = Bt 2 Re = th__l + (:;L)t(‘if_tl()wt—l) LS 8 :ﬁgtwt(wt_l) g
o= et — V, \/Zt:ﬂVLt'(wtf-l) e e JR: BoMyy + (1 -) ThelWe=n) -0
- (1= f2)? =
M,
Yam Peleg W= Wi T A

DEEP LEARNING FOR TRADING

GRADIENT BASED MODELS

1: Forward Propagation 2: Loss Calculation 3: Optimization

gradient =

0 Loss = ..
def model(X, weights) T.grad(loss, weights)

updates =
[[weights, weights - gradien

|
000 - 000 - |
A wooE
000 - 000 /-
L Wl L Wl
YY N Y

S (F(F6)) . L(3,5)

Yam Peleg

W1

Wy

JE dl(y,y)
ox Ox

DEEP LEARNING FOR TRADING

Sequential

([J
Ke ras T Uto r I a I The core data structure of Keras is a model, a way to

Simple Squential organize layers. The main type of model is the Sequential
model, a linear stack of layers.

In [1]: from keras.models import Sequential
from keras.layers.core import Dense, Activation

model = Sequential()

model.add(Dense(output dim=.., input dim=..)) model.add(Activation(...))

Input

Input —m

Input

Output

Yam Peleg

DEEP LEARNING FOR TRADING

Simple Squential

In

[1]:

Tutorial

from keras.models import Sequential
from keras.layers.core import Dense, Activation

model

model.
model.
.add(Dense(output_dim=24, input dim=64))
model.
model.
.add(Activation("softmax"))

model

model

model.
Fit(X,Y)

model

= Sequential()

The core data structure of Keras is a model, a way to
organize layers. The main type of model is the Sequential
model, a linear stack of layers.

add(Dense(output _dim=64, input dim=100))
add(Activation("relu"))

add(Activation("relu"))
add(Dense(output _dim=10))

compile(loss="'categorical crossentropy', optimizer='sgd')

Yam Peleg
LEARNING

TRADING

Deep Neural Networks

For complex function approximation

Recommended Papers

Implementing deep neural networks for financial market prediction, Dixon et al,

Yam Peleg
DEEP LEARNING FOR TRADING

Deep Neural Networks

For complex function approximation

'Hidden Layers

Sequentlal() . p

model. add (Dense(output_dim=64, input_dim=100)) 555555555555555555Q1?$S!f!9?.t_'.9.'515:5:5:5:5:5:5:

.add(Activation("relu"))
.add(Dense(output_dim=24, input _dim=64))

.compile(loss="'categorical crossentropy’,
optimizer="sgd')
Fit(X,Y)

Yam Peleg
DEEP LEARNING FOR TRADING

- Auto Encoders -

B DI For learning the distribution of the features I

HiddenLayers OutputLayer PaStPrices

- - isciiitd
: /‘\ @ : TAn:wsisl

e R e Recommended Papers B s

--------- o Deep Modeling Complex Couplings within Financial Markets, Cao et al, AAAI 2015 e g

LIPS PE PPN PP Yam Peleg e I

B DEEP LEARNING FOR TRADING e T R B

Auto Encoders

For learning the distribution of the features

'Hidden Layers

0. 00
N

oo 00
T =l

= Sequential()

model.add(Dense(output _dim=64, input dim=100))
model.add(Activation("relu"))

' .add(Dense(output_dim=24, input dim=64))

.compile(loss="'categorical crossentropy’,
optimizer="sgd')
Fit(X,X)

Yam Peleg
DEEP LEARNING FOR TRADING

Questions?

