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OUR GOAL

2 We want to predict the future.
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SUPERVISED LEARNING

Labels
L ED Model

Each example in the training data is a pair consisting of an input vector (features) and a
desired output value (labels).

A supervised learning algorithm analyzes the training data and approximate a function, which
can be used for mapping new unlabeled examples.
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PREDICTION

The longer the time frame, the more difficult it will be to accurately forecast financial results.
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DEEP LEARNING?

This is why.
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LINEAR REGRESSION
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Regression
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Perceptron

The Artificial Neuron
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Neural Network

One Layer Perceptron

Perceptron Layer
(Hidden Layer)

Output Layer

Input Layer
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GRADIENT BASED MODELS

1: Forward Propagation 2: Loss Calculation
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3: Optimization
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DEEP LEARNING COMMON STRUCTURES

e Perceptron It is a type of linear classifier, a classification algorithm that makes its predictions based on a linear

lERt ouput  predictor function combining a set of weights with the feature vector. The algorithm allows for online learning, in that
Input it processes elements in the training set one at a time.
SUPERVISED UNSUPERVISED

FEED FORWARD RECURRENT

Feed Forward Network sometimes
Referred to as MLP, is a fully

connected dense model used as a

Auto Encoder aims to learn a . .

representation (encoding) for a set . .
of data, typically for the purpose of ‘/ \.

aimensionality reduction.
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DEEP LEARNING SUPERIORITY

Deep Learning is better then humans on certain Image recognition tasks.

Deep Learning

tv ex.monitor

ref: http://www.image-net.org/challenges/LSVRC/
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Deep Neural Networks

For complex function approximation

Recommended Papers

Implementing deep neural networks for financial market prediction, Dixon et al,
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UNSUPERVISED LEARNING

Features
Features Model

Each example in the training data is a pair consisting of an input vector and again the input
vector.

The goal is to learn function that describes the hidden structure from unlabeled data.
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- Auto Encoders -

B DI For learning the distribution of the features I
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S Unsupervised Pretraining o

For better approximation
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Deep Learning Hardware

Deep learning is often done on the GPU or other powerful devices
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Deep Learning Framework

Deep learning is often done on the GPU or other powerful devices
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Deep Learning Using Python

Deep learning is often done on the GPU or other powerful devices

K

CUDA

Language Prhateredidn Framework Driver + Lib Hardware
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Python Stays Python

Deep learning is often done on the GPU or other powerful devices

theano.sandbox. cuda

theano.sandbox.cuda.use("gpu")
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Theano

Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently.
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Theano Tutorial

Language i dng
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Tutorial

Shared Variables

In [1]: import numpy, theano
np_array = numpy.ones(2, dtype='float32')

s _false theano.shared(np_array, borrow=False)
s_true = theano.shared(np_array, borrow=True)

np_array += 1
print(s_false.get value())

print(s_true.get value())
A Theano Variable is a Variable with storage that is

shared between functions that it appears in.
out [11:[ 1. 1.]
[ 2. 2.]

Yam Peleg

LEARNING TRADING



Theano Tutorial

When using theano.function you're compiling C code performing your tasks under the hood. This is what makes Theano fast.

In [1]: import theano
x = theano.tensor.dscalar()
£ = theano.function([x], 2*x)
t(4)

Out [1]:array(8.0
y( ) The idea here is that we've compiled the symbolic graph

(2*x) into a function that can be called on a number and
will do some computations.
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Tutorial

Gradients: computes the derivative of some expression

In [1]: import numpy

import theano
import theano.tensor as T Now let's use Theano for a slightly more sophisticated
task: create a function which computes the derivative of

from theano import ) : )
p pp some expressiony with respect to its parameter ) &

X = T.dscalar('x")

y = x ** 2

gy = T.grad(y, x)

pp(gy) # print out the gradient prior to optimization

out [1]1: "((fill((x ** TensorConstant{2}), TensorConstant{1.0}) *
TensorConstant{2}) * (x ** (TensorConstant{2} - TensorConstant{1})))'

In [2]: f = theano.function([x], gy)
f(4)

Out [2]: array(8.0)
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Gradient based linear regression =1

In

[1]:

def model(X, weights):
return X * weights

w = theano.shared(np.asarray(0., dtype=theano.config.floatX))
y = model(X, weights)

Loss = T.mean(T.sqgr(y - Y))
gradient = T.grad(loss, weights)
updates = [[weights, weights - gradient * learning rate]]

train = theano.function(inputs=[X, Y], outputs=loss, updates=updates,
allow input_downcast=True)

for i in range(epoches):
for x, y in zip(X, Y):
train(x, y)
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GRADIENT BASED MODELS

1: Forward Propagation 2: Loss Calculation

y * ~E=17,y)

s

3: Optimization
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GRADIENT BASED MODELS

1: Forward Propagation 2: Loss Calculation 3: Optimization

gradient =

0 Loss = ..
def model(X, weights) T.grad(loss, weights)

updates =
[ [weights, weights - gradien
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Sequential

([ J
Ke ras T Uto r I a I The core data structure of Keras is a model, a way to

Simple Squential organize layers. The main type of model is the Sequential
model, a linear stack of layers.

In [1]: from keras.models import Sequential
from keras.layers.core import Dense, Activation

model = Sequential()

model.add(Dense(output dim=.., input dim=..)) model.add(Activation(...))

Input

Input —m

Input

Output
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Simple Squential

In

[1]:

Tutorial

from keras.models import Sequential
from keras.layers.core import Dense, Activation

model

model.
model.
.add(Dense(output_dim=24, input dim=64))
model.
model.
.add(Activation("softmax"))

model

model

model.
Fit(X,Y)

model

= Sequential()

The core data structure of Keras is a model, a way to
organize layers. The main type of model is the Sequential
model, a linear stack of layers.

add(Dense(output _dim=64, input dim=100))
add(Activation("relu"))

add(Activation("relu"))
add(Dense(output _dim=10))

compile(loss="'categorical crossentropy', optimizer='sgd')
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Deep Neural Networks

For complex function approximation

Recommended Papers

Implementing deep neural networks for financial market prediction, Dixon et al,
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Deep Neural Networks

For complex function approximation

'Hidden Layers

Sequentlal( ) . p

model. add (Dense(output_dim=64, input_dim=100)) 555555555555555555Q1?$S!f!9?.t_'.9.'515:5:5:5:5:5:5:

.add(Activation("relu"))
.add(Dense(output_dim=24, input _dim=64))

.compile(loss="'categorical crossentropy’,
optimizer="sgd')
Fit(X,Y)
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- Auto Encoders -

B DI For learning the distribution of the features I
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Auto Encoders

For learning the distribution of the features

'Hidden Layers

0. 00
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= Sequential()

model.add(Dense(output _dim=64, input dim=100))
model.add(Activation("relu"))

' .add(Dense(output_dim=24, input dim=64))

.compile(loss="'categorical crossentropy’,
optimizer="sgd')
Fit(X,X)
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Questions?



