
DEEP LEARNING FOR TRADING

OUR GOAL

160.5

161

161.5

162

162.5

163

163.5

164

35
:0

9.
9

37
:0

8.
7

38
:5

9.
2

40
:3

8.
7

42
:1

7.
6

43
:4

9.
0

45
:3

5.
9

47
:5

5.
2

49
:3

2.
2

51
:0

2.
2

52
:2

5.
6

54
:2

4.
2

56
:3

1.
8

58
:2

7.
3

59
:5

8.
8

01
:4

3.
3

03
:2

2.
2

08
:0

3.
3

10
:1

1.
6

14
:0

4.
0

17
:3

7.
5

21
:1

9.
2

26
:0

3.
8

30
:4

6.
0

33
:0

7.
0

36
:5

4.
2

40
:0

0.
4

43
:2

7.
5

48
:2

2.
7

52
:2

6.
2

54
:5

9.
0

57
:3

3.
4

01
:0

0.
6

04
:4

1.
4

08
:2

3.
5

11
:2

0.
4

15
:4

4.
1

19
:1

5.
9

21
:2

4.
3

25
:0

0.
7

30
:2

5.
5

37
:2

6.
4

43
:3

4.
5

47
:5

6.
6

53
:4

0.
0

01
:4

6.
4

21
:1

2.
6

31
:3

1.
7

44
:0

2.
0

59
:3

3.
3

12
:5

0.
0

?

DEEP LEARNING FOR TRADING

OUR GOAL

160.5

161

161.5

162

162.5

163

163.5

164

35
:0

9.
9

37
:5

4.
1

40
:4

9.
8

43
:2

6.
2

46
:3

5.
5

49
:2

1.
6

51
:3

1.
1

54
:2

4.
2

57
:4

0.
0

00
:0

9.
6

03
:0

6.
4

08
:4

3.
3

12
:0

9.
7

19
:4

8.
3

26
:0

3.
8

31
:2

9.
9

37
:0

1.
4

42
:3

1.
3

49
:5

5.
8

54
:3

9.
3

58
:3

0.
6

04
:4

1.
4

10
:4

9.
1

16
:2

0.
4

21
:0

5.
0

26
:5

0.
1

35
:5

0.
7

45
:1

9.
9

53
:4

0.
0

10
:1

6.
3

33
:0

6.
1

52
:4

5.
9

13
:5

4.
7

DEEP LEARNING FOR TRADING

Model
Labels

Each example in the training data is a pair consisting of an input vector (features) and a

desired output value (labels).

A supervised learning algorithm analyzes the training data and approximate a function, which

can be used for mapping new unlabeled examples.

Features

SUPERVISED LEARNING

Dog

DEEP LEARNING FOR TRADING

FINNANCIAL PREDICTION PITFALLS

Much Data

Possible relevant data

from many markets is

incredibly large.

No Theory

Complex non-linear

interactions in the data

are not well specified

by financial theory.

Noisy Data

Noise In financial data

Is very common and

sometimes

distinguishing noise

from behavior is hard.

Importance

Data Importance is

questionable and

determination of

meaningful data is hard.

Overfitting

Overfitted easily, most

models have poor

predictive capabilities

On financial data.

Behavior

Behavior of financial

markets change all the

time and can be really

unpredictable.

DEEP LEARNING FOR TRADING

WHY DEEP LEARNING?

Much Data

Possible relevant data

from many markets is

incredibly large.

No Theory

Complex non-linear

interactions in the data

are not well specified

by financial theory.

Noisy Data

Noise In financial data

Is very common and

sometimes

distinguishing noise

from behavior is hard.

Importance

Data Importance is

questionable and

determination of

meaningful data is hard.

Overfitting

Overfitted easily, most

models have poor

predictive capabilities

On financial data.

Behavior

Behavior of financial

markets change all the

time and can be really

unpredictable.

DEEP LEARNING FOR TRADING

LINEAR REGRESSION

DEEP LEARNING FOR TRADING

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯+ 𝛽𝑛𝑥𝑖𝑛 + 𝜀

∑ 𝑦𝑖

𝑥𝑖1
𝑥𝑖2
𝑥𝑖3

𝑥𝑖𝑛

…
…

DEEP LEARNING FOR TRADING

Regression

Perceptron

DEEP LEARNING FOR TRADING

Neural Network

Perceptron Layer
(Hidden Layer)

Input Layer Output Layer

DEEP LEARNING FOR TRADING

GRADIENT BASED MODELS
Legend

𝑥0

𝑓0(𝑥0, 𝑤0)

𝑓1(𝑥1, 𝑤1)

𝑓2(𝑥2, 𝑤2)

𝑓𝑛 𝑥𝑛, 𝑤𝑛 = 𝑦

𝑓𝑛−1(𝑥𝑛−1, 𝑤𝑛−1)

𝑓𝑛−2(𝑥𝑛−2, 𝑤𝑛−2)

𝑤0

𝑤1

𝑤𝑛

𝑤𝑛−1

𝐸 = 𝑙 𝑦, 𝑦𝑦

𝑙 𝑦, 𝑦 - Loss Function

𝑥0 - Features Vector

𝑥𝑖 - Output of 𝑖 layer

𝑤𝑖 - Weights of 𝑖 layer

𝑦 – Ground Truth

 𝑦 – Model Output

𝐸 – Loss Surface

𝜕𝐸

𝜕𝑥𝑛
=

𝜕𝑙 𝑦, 𝑦

𝜕𝑥𝑛

𝜕𝐸

𝜕𝑤𝑛
=

𝜕𝐸

𝜕𝑥𝑛

𝜕𝑓𝑛 𝑥𝑛−1, 𝑤𝑛

𝜕𝑤𝑛

𝜕𝐸

𝜕𝑥𝑛−1
=

𝜕𝐸

𝜕𝑥𝑛

𝜕𝑓𝑛 𝑥𝑛−1, 𝑤𝑛

𝑥𝑛−1

𝑓– Activation Function

𝜕𝐸

𝜕𝑥𝑛−2
=

𝜕𝐸

𝜕𝑥𝑛−1

𝜕𝑓𝑛−1 𝑥𝑛−2, 𝑤𝑛−1

𝑥𝑛−2

𝜕𝐸

𝜕𝑤𝑛−1
=

𝜕𝐸

𝜕𝑥𝑛−1

𝜕𝑓𝑛 𝑥𝑛−2, 𝑤𝑛−1

𝜕𝑤𝑛−1

…
…

𝐹
𝑜
𝑟𝑤

𝑎
𝑟𝑑

𝑃
𝑟𝑜

𝑝
𝑎
𝑔
𝑎
𝑡𝑖
𝑜
𝑛

𝐵
𝑎
𝑐𝑘

𝑃
𝑟𝑜

𝑝
𝑎
𝑔
𝑎
𝑡𝑖𝑜

𝑛

𝑣𝑡 = 𝜇𝑣𝑡−1 − 𝛼𝛻𝐿𝑡(𝑤𝑡−1)

𝑤𝑡 = 𝑤𝑡−1 − 𝑉𝑡

Classic SGD

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝛻𝐿𝑡(𝑤𝑡−1)

𝑡′=1
𝑡 𝛻𝐿𝑡′(𝑤𝑡′−1)

2

AdaGrad RMSProp
𝑅𝑡 = 𝛾𝑅𝑡−1 + (1 − 𝛾) 𝛻𝐿𝑡(𝑤𝑡−1)

2

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝛻𝐿𝑡(𝑤𝑡−1)

𝑅𝑡

𝑀𝑡 =
𝛽1𝑀𝑡−1 + (1 − 𝛽1) 𝛻𝐿𝑡(𝑤𝑡−1)

(1 − 𝛽1)
𝑡

𝑅𝑡 =
𝛽2𝑀𝑡−1 + (1 −

𝛽2
2
)

𝛻𝐿𝑡(𝑤𝑡−1)
2

(1 − 𝛽2)
2

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝑀𝑡

𝑅𝑡

Adam

1: Forward Propagation 2: Loss Calculation 3: Optimization

DEEP LEARNING FOR TRADING

DEEP LEARNING COMMON STRUCTURES

SUPERVISED UNSUPERVISED

Perceptron It is a type of linear classifier, a classification algorithm that makes its predictions based on a linear

predictor function combining a set of weights with the feature vector. The algorithm allows for online learning, in that

it processes elements in the training set one at a time.

RECURRENTFEED FORWARD

Feed Forward Network sometimes

Referred to as MLP, is a fully

connected dense model used as a

simple classifier.

Convolutional Network assume that

highly correlated features located

close to each other in the input

matrix and can be pooled and

treated as one in the next layer.

Known for superior Image

classification capabilities.

Simple Recurrent Neural Network

is a class of artificial neural

network where connections

between units form a directed

cycle.

Hopfield Recurrent Neural Network

It is a RNN in which all connections

are symmetric. it requires

stationary inputs.

Long Short Term Memory Network

contains gates that determine if

the input is significant enough to

remember, when it should continue

to remember or forget the value,

and when it should output

Auto Encoder aims to learn a

representation (encoding) for a set

of data, typically for the purpose of

dimensionality reduction.

Restricted Boltzmann Machine

can learn a probability distribution

over its set of inputs..

Deep Belief Net is a composition of

simple, unsupervised networks such

as restricted Boltzmann machines

,where each sub-network's hidden

layer serves as the visible layer for

the next.

DEEP LEARNING FOR TRADING

DEEP LEARNING SUPERIORITY

96.92%
Deep Learning

94.9%
Human

DEEP LEARNING FOR TRADING

Deep Neural Networks

Input Layer Output Layer

DEEP LEARNING FOR TRADING

Hidden Layersי

Ground Truth

Future Prices

Up or Down
Classification

Regression

Features

Past Prices

Correlations

Technical
Analysis

Z Score

Time Features Implementing deep neural networks for financial market prediction, Dixon et al,
2015

Recommended Papers

Model
Features

Each example in the training data is a pair consisting of an input vector and again the input

vector.

The goal is to learn function that describes the hidden structure from unlabeled data.

Features

UNSUPERVISED LEARNING

DEEP LEARNING FOR TRADING

Auto Encoders

Input Layer Output Layer

DEEP LEARNING FOR TRADING

Hidden Layersי

Features

Past Prices

Correlations

Technical
Analysis

Z Score

Time Features

Features

Past Prices

Correlations

Technical
Analysis

Z Score

Time Features
Deep Modeling Complex Couplings within Financial Markets, Cao et al, AAAI 2015

Recommended Papers

Unsupervised Pretraining

Input Layer Output Layer

DEEP LEARNING FOR TRADING

Hidden Layersי

Features

Past Prices

Correlations

Technical
Analysis

Z Score

Time Features

Features

Past Prices

Correlations

Technical
Analysis

Z Score

Time Features

Ground Truth

Future Prices

Up or Down
Classification

Regression

Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks, L
Takeuchi, 2013

Deep Learning for Multivariate Financial Time Series, Estrada, 2015

Recommended Papers

DEEP LEARNING WITH PYTHON

Deep Learning Hardware

Better for Matrix algebra

Parallel calculations

Much more powerful

DEEP LEARNING FOR TRADING

Deep Learning Framework

DEEP LEARNING FOR TRADING

HardwareDriver + LibFrameworkFrameworkLanguage

Deep Learning Using Python

DEEP LEARNING FOR TRADING

HardwareDriver + LibFrameworkFrameworkLanguage Abstraction

Python Stays Python

DEEP LEARNING FOR TRADING

import theano.sandbox.cuda

theano.sandbox.cuda.use("gpu")

Theano

DEEP LEARNING FOR TRADING

Theano Tutorial

DEEP LEARNING FOR TRADING

Theano Tutorial

DEEP LEARNING FOR TRADING

import numpy, theano
np_array = numpy.ones(2, dtype='float32')

s_false = theano.shared(np_array, borrow=False)
s_true = theano.shared(np_array, borrow=True)

np_array += 1
print(s_false.get_value())
print(s_true.get_value())

[1. 1.]
[2. 2.]

In [1]:

Out [1]:

Variables
A Theano Variable is a Variable with storage that is
shared between functions that it appears in.

Theano Tutorial

DEEP LEARNING FOR TRADING

import theano
x = theano.tensor.dscalar()
f = theano.function([x], 2*x)
f(4)

array(8.0)

In [1]:

Out [1]: Functions
The idea here is that we’ve compiled the symbolic graph
(2*x) into a function that can be called on a number and
will do some computations.

Theano Tutorial

DEEP LEARNING FOR TRADING

import numpy
import theano
import theano.tensor as T
from theano import pp
x = T.dscalar('x')
y = x ** 2
gy = T.grad(y, x)
pp(gy) # print out the gradient prior to optimization

'((fill((x ** TensorConstant{2}), TensorConstant{1.0}) *
TensorConstant{2}) * (x ** (TensorConstant{2} - TensorConstant{1})))'

f = theano.function([x], gy)
f(4)

array(8.0)

In [1]:

Out [1]:

Gradients
Now let’s use Theano for a slightly more sophisticated
task: create a function which computes the derivative of
some expression y with respect to its parameter x.

In [2]:

Out [2]:

LINEAR REGRESSION

DEEP LEARNING FOR TRADING

 𝑦 = 𝑤𝑥 𝑙 =
1

𝑛

𝑖=1

𝑛

(𝑦𝑖 − 𝑦𝑖)
2 𝑤 = 𝑤 − 𝛼

𝜕𝑙

𝜕𝑤

Theano Tutorial

DEEP LEARNING FOR TRADING

def model(X, weights):
return X * weights

w = theano.shared(np.asarray(0., dtype=theano.config.floatX))
y = model(X, weights)

Loss = T.mean(T.sqr(y - Y))
gradient = T.grad(loss, weights)
updates = [[weights, weights - gradient * learning_rate]]

train = theano.function(inputs=[X, Y], outputs=loss, updates=updates,
allow_input_downcast=True)

for i in range(epoches):
for x, y in zip(X, Y):

train(x, y)

In [1]:

 𝑦 = 𝑤𝑥 𝑙 =
1

𝑛

𝑖=1

𝑛

(𝑦𝑖 − 𝑦𝑖)
2 𝑤 = 𝑤 − 𝛼

𝜕𝑙

𝜕𝑤

Function Loss Update Rule

GRADIENT BASED MODELS
Legend

𝑥0

𝑓0(𝑥0, 𝑤0)

𝑓1(𝑥1, 𝑤1)

𝑓2(𝑥2, 𝑤2)

𝑓𝑛 𝑥𝑛, 𝑤𝑛 = 𝑦

𝑓𝑛−1(𝑥𝑛−1, 𝑤𝑛−1)

𝑓𝑛−2(𝑥𝑛−2, 𝑤𝑛−2)

𝑤0

𝑤1

𝑤𝑛

𝑤𝑛−1

𝐸 = 𝑙 𝑦, 𝑦𝑦

𝑙 𝑦, 𝑦 - Loss Function

𝑥0 - Features Vector

𝑥𝑖 - Output of 𝑖 layer

𝑤𝑖 - Weights of 𝑖 layer

𝑦 – Ground Truth

 𝑦 – Model Output

𝐸 – Loss Surface

𝜕𝐸

𝜕𝑥𝑛
=

𝜕𝑙 𝑦, 𝑦

𝜕𝑥𝑛

𝜕𝐸

𝜕𝑤𝑛
=

𝜕𝐸

𝜕𝑥𝑛

𝜕𝑓𝑛 𝑥𝑛−1, 𝑤𝑛

𝜕𝑤𝑛

𝜕𝐸

𝜕𝑥𝑛−1
=

𝜕𝐸

𝜕𝑥𝑛

𝜕𝑓𝑛 𝑥𝑛−1, 𝑤𝑛

𝑥𝑛−1

𝑓– Activation Function

𝜕𝐸

𝜕𝑥𝑛−2
=

𝜕𝐸

𝜕𝑥𝑛−1

𝜕𝑓𝑛−1 𝑥𝑛−2, 𝑤𝑛−1

𝑥𝑛−2

𝜕𝐸

𝜕𝑤𝑛−1
=

𝜕𝐸

𝜕𝑥𝑛−1

𝜕𝑓𝑛 𝑥𝑛−2, 𝑤𝑛−1

𝜕𝑤𝑛−1

…
…

𝐹
𝑜
𝑟𝑤

𝑎
𝑟𝑑

𝑃
𝑟𝑜

𝑝
𝑎
𝑔
𝑎
𝑡𝑖
𝑜
𝑛

𝐵
𝑎
𝑐𝑘

𝑃
𝑟𝑜

𝑝
𝑎
𝑔
𝑎
𝑡𝑖𝑜

𝑛

𝑣𝑡 = 𝜇𝑣𝑡−1 − 𝛼𝛻𝐿𝑡(𝑤𝑡−1)

𝑤𝑡 = 𝑤𝑡−1 − 𝑉𝑡

Classic SGD

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝛻𝐿𝑡(𝑤𝑡−1)

𝑡′=1
𝑡 𝛻𝐿𝑡′(𝑤𝑡′−1)

2

AdaGrad RMSProp
𝑅𝑡 = 𝛾𝑅𝑡−1 + (1 − 𝛾) 𝛻𝐿𝑡(𝑤𝑡−1)

2

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝛻𝐿𝑡(𝑤𝑡−1)

𝑅𝑡

𝑀𝑡 =
𝛽1𝑀𝑡−1 + (1 − 𝛽1) 𝛻𝐿𝑡(𝑤𝑡−1)

(1 − 𝛽1)
𝑡

𝑅𝑡 =
𝛽2𝑀𝑡−1 + (1 −

𝛽2
2
)

𝛻𝐿𝑡(𝑤𝑡−1)
2

(1 − 𝛽2)
2

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
𝑀𝑡

𝑅𝑡

Adam

1: Forward Propagation 2: Loss Calculation 3: Optimization

DEEP LEARNING FOR TRADING

updates = [[weights, weights - gradient * learning_rate]]

GRADIENT BASED MODELS
Legend

𝑙 𝑦, 𝑦

𝑙 𝑦, 𝑦 - Loss Function

𝑥0 - Features Vector

𝑥𝑖 - Output of 𝑖 layer

𝑤𝑖 - Weights of 𝑖 layer

𝑦 – Ground Truth

 𝑦 – Model Output

𝐸 – Loss Surface

𝑓– Activation Function

1: Forward Propagation 2: Loss Calculation 3: Optimization

DEEP LEARNING FOR TRADING

𝜕𝐸

𝜕𝑥
=

𝜕𝑙 𝑦, 𝑦

𝜕𝑥

𝑓0(𝑥0, 𝑤0)

𝑓1(𝑥1, 𝑤1)

𝑓2(𝑥2, 𝑤2)

𝑤0

𝑤1

…𝑓 𝑓 𝑓 𝑥 …

def model(X, weights)
…
… updates =

[[weights, weights - gradient]]

gradient =
T.grad(loss, weights)

Loss = …

Keras Tutorial

DEEP LEARNING FOR TRADING

from keras.models import Sequential
from keras.layers.core import Dense, Activation

model = Sequential()

In [1]:

Sequential
The core data structure of Keras is a model, a way to
organize layers. The main type of model is the Sequential
model, a linear stack of layers.

model.add(Dense(output_dim=…, input_dim=…)) model.add(Activation(…))

Keras Tutorial

DEEP LEARNING FOR TRADING

from keras.models import Sequential
from keras.layers.core import Dense, Activation

model = Sequential()
model.add(Dense(output_dim=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(output_dim=24, input_dim=64))
model.add(Activation("relu"))
model.add(Dense(output_dim=10))
model.add(Activation("softmax"))

model.compile(loss='categorical_crossentropy', optimizer='sgd')
model.fit(X,Y)

In [1]:

Sequential
The core data structure of Keras is a model, a way to
organize layers. The main type of model is the Sequential
model, a linear stack of layers.

Deep Neural Networks

Input Layer Output Layer

DEEP LEARNING FOR TRADING

Hidden Layersי

Ground Truth

Future Prices

Up or Down
Classification

Regression

Features

Past Prices

Correlations

Technical
Analysis

Z Score

Time Features Implementing deep neural networks for financial market prediction, Dixon et al,
2015

Recommended Papers

Deep Neural Networks

Input Layer Output Layer

DEEP LEARNING FOR TRADING

Hidden Layersי
Ground Truth

Future Prices

Up or Down
Classification

Regression

Features

Past Prices

Correlations

Technical
Analysis

Z Score

Time Features

model = Sequential()
model.add(Dense(output_dim=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(output_dim=24, input_dim=64))
…
model.compile(loss='categorical_crossentropy',

optimizer='sgd')
model.fit(X,Y)

Auto Encoders

Input Layer Output Layer

DEEP LEARNING FOR TRADING

Hidden Layersי

Features

Past Prices

Correlations

Technical
Analysis

Z Score

Time Features

Features

Past Prices

Correlations

Technical
Analysis

Z Score

Time Features
Deep Modeling Complex Couplings within Financial Markets, Cao et al, AAAI 2015

Recommended Papers

Auto Encoders

Input Layer Output Layer

DEEP LEARNING FOR TRADING

Hidden LayersFeaturesי

Past Prices

Correlations

Technical
Analysis

Z Score

Time Features

Features

Past Prices

Correlations

Technical
Analysis

Z Score

Time Features

model = Sequential()
model.add(Dense(output_dim=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(output_dim=24, input_dim=64))
…
model.compile(loss='categorical_crossentropy',

optimizer='sgd')
model.fit(X,X)

Questions?

